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=PFL  Introduction

Deep Learning Revolution

Transformed tasks like image classification, video processing, and speech recognition.
Traditional tasks deal with data in Euclidean space.

Challenges with Non-Euclidean Data
Increasing applications with data represented as graphs (complex relationships & interdependencies).
Graph data pose significant challenges for existing machine learning algorithms.

Emergence of Graph Neural Networks (GNNs)
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=PFL GNNs vs. Network Embedding

Network Embedding:

« Converts nodes into low-dimensional vectors.

» Focuses on preserving network structure for tasks like classification and clustering.

* Includes deep and non-deep learning methods (e.g., matrix factorization, random walks).

GNNs:

* End-to-end deep learning models for various graph tasks.

« Extract high-level representations.

» Can solve network embedding through a graph autoencoder.

Key Difference:

GNNs are a group of neural network models which are designed for various tasks while network
embedding covers various kinds of methods targeting the same task.
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£PFL  Taxonomies

Category

Recurrent Graph Neural Networks (RecGNNs)

Spectral methods

Convolutional Graph Neural Networks (ConvGNNs)  Spatial methods

Network Embedding

Graph Autoencoders (GAEs) Graph Generation

Spatial-temporal Graph Neural Networks (STGNNs)

? Node-level ...

- Graph-level Can be trained in:
D L
------ 2 ) «  Supervised manner

*  Semi-supervised manner
*  Unsupervised manner

(3]
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=PFL  Spectral-Based GCNs

* Spectral-based methods have a solid mathematical foundation in graph signal processing.
* They assume graphs to be undirected.

L=1I,-D 3AD 3

Convolution X %G g = 9_1(,?(x) o Z(g))
=U(U"x o U'g),
f 8o = diag(UTg) P
earnable
_ W
Spectral-based GNNs x *xg go = UgyUTx. g6 i)

fr—1
The graph convolutional layer of Spectral CNN is defined as ~ H" =o(}_ ve?uvTw% ™) (j=1.2,
=1

7fk)7
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=PrL

Limitations

Any perturbation to a graph results in a change of eigenbasis.

Learned filters are domain dependent, meaning they cannot be applied to a graph with a
different structure.

Eigen-decomposition requires cubic computational complexity

~
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=PFL ChebNet

» Chebyshev Spectral CNN (ChebNet) approximates the filter by Chebyshev polynomials of the
diagonal matrix of eigenvalues

A=2A dmaw—In L1

K ~
86 = Qi tiTi(A
0 _Z 0 ( ) () =250 (X)) — T o(X)

Tplx) =1 and T (x) = x.

K
Convolution with a defined Chebyshev filter X xg gg = U(Z 0;T; (A))UTX,
1=0
Tz(]‘;) = UTz(A)UT L= 2L/ Aoz — In
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=PrL

CayleyNet

Filters defined by ChebNet are localized in space, which means filters can extract local features
independently of the graph size.

CayleyNet X *G 89 = coX + 2Re{) _ ¢;(hL —il)? (hL + 1) ~Ix},

Jj=1

Re(-) returns the real part of a complex number,
co is a real coefficent,
¢; is a complex coefficent,

h is a parameter which controls the spectrum of a Cayley filter

©
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=PrL GCN

» Graph Convolutional Network (GCN) introduces a first-order approximation of ChebNet.
Assuming K = 1and 4,4, = 2

X %G 89 = Opx — ;D 2 AD 2x

x *c g = (I, + D"2AD ™ 2)x.

Finally for multichannel input and output

B=X *G 86 = f(AX@)

-

I: & D2AD %

bl
Il

Normalization trick to avoid numerical instability I,+D 2AD =

Replace A=1, +D—%AD—‘§ by A = D 2AD 2 with A = A +1,

GCN can be also interpreted as a spatial-based method

[y
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=PrL

Spatial-based GCNs

Message Passing Neural Network (MPNN) outlines a general framework of spatial-
based ConvGNNSs.

It treats graph convolutions as a message passing process in which information can be
passed from one node to another along edges directly.

MPNN runs K-step message passing iterations to let information propagate further

WY =Ou(hG S, ¥, M hE=s, =5 ),
ueN (v)

-
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=Pl GraphSAGE

GraphSage adopts sampling to obtain a fixed number of neighbors for each node.

It performs graph convolutions by

hg)k) = U(W(k) ’ fk‘(hgjk_l)a {h'El,k—l)7\v/u € SN(v)}))a

fi(+) is an aggregation function, should be invariant to the permutations of node orderings such as a mean, sum or max function.

Sn(v) Random sample on node neighbors

[y
N
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=PrL

Graph Isomorphism Networks

Graph Isomorphism Network (GIN) finds that previous MPNN-based methods are
incapable of distinguishing different graph structures based on the graph embedding
they produced.

GIN adjusts the weight of the central node by a learnable parameter.

It performs graph convolutions by

h(® = MLP((1+*)h{D + Y~ n{Y),
uEN (v)

Discriminative and represnetation power of GIN is equal to the power of Weisfelier-Lehman test.

Graph isomorphism problem: Are two graphs topologically identical?

The WL test iteratively (1) aggregates the labels of nodes and their neighborhoods, and
(2) hashes the aggregated labels into unique new labels. The algorithm decides that two
graphs are non-isomorphic if at some iteration the labels of the nodes between the two
graphs differ.

-
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=P

r

L Color Refinement (1-WL test)

Take as input two graphs G and H and output a certificate that they are different or 'l don't know'.

This means that if the heuristic is able to tell G and H apart, then they are definitely different, but
the other direction does not hold.

&\o.s\q(.; 2‘,.5) kasL\( )Z s S)
}'\as&\(.)z.,‘).s) hasL\( :z > S)
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=P7L  Attentional Graph Neural Networks

Let’'s consider more general form of GCN:

;7.=0-(Z ij WIZ)

—~

JENi
GCN defines «;; explicitly! 1 , Possible shortcoming!
J \/deg(vz)deg(vj)

Instead, we let «;; be computed implictly aj = a(h;, hy, €y)
N -

a is a learnable i Z
exp(aik)

k€ N;

We arrived at Graph Attention Networks (GAT)!

[y
o
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=PFL  GAT and GATv2

0ij
hy

é\ RN eintesy :a’ﬂ
% a12 " "".': K
- EYE oo ooeeneess .: 7{ ...... concat/avg

h3 e > 1 ;._,,...N-

Qg .
14 ‘y e

a A
A Pif 7
4 = :
hs

Vi Y i
Wh; Wh
GAT (Velickovié et al., 2018): LeakyReLU (a” - [Wh,||Wh;])
GATv2 (our fixed version): a' LeakyReLU (W - [h;||R;])

[y
(-]

Keivan Faghih Niresi



=PFL  Relations to Transformers

Transformers are Graph Neural Networks!
e Fully-connected graph
* Message function == Sender node features
* Aggregation == Attention

The sequential structural information is injected through

the positional embeddings. Dropping them yields a
fully-connected GAT model.

See Joshi (The Gradient; 2020).

Multi-head attention

!

Linear

1

Concat

Scaled dot-product
attention

limaar llinaar SIS |llinoar

-
~
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=PFL  Recap on GNNs

Cha \C‘MD

Xb < Che Xc

Convolutional

h; =¢ (Xi, = Cijd)(xj))

JEN;

h,‘-=

Attentional

é (xia

@ a(x,-, x_,-)z,!)(xj)

JEN;

|

X4

Message-passing

hi=¢(

JEN;

xi, P w(xi:xj))

18



=PrL Spectral vs. Spatial

Spectral Models:

Foundation:
Built on graph signal processing.

Efficiency:

Requires eigenvector computation or
processing the entire graph.

Less scalable for large graphs.

Generalization:

Performs poorly on new graphs due
to reliance on graph Fourier basis.
Sensitive to graph perturbations.

Graph Types:
Limited to undirected graphs.

Spatial Models:

Operation:
Directly performs convolutions in the graph
domain via local information propagation.

Efficiency:

More scalable: Can be computed in batches
of nodes.

Avoids full-graph processing.

Generalization:

Generalizes better to new graphs; operates
locally on nodes.

Weights can be shared across different graph
structures.

Graph Types:
Handles directed, heterogeneous, and signed
graphs easily..

[y
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=P7L Pooling

Why Down-sampling in GNNs?
Directly using all node features can be computationally expensive.
A down-sampling strategy is required to reduce parameters and prevent overfitting.

Pooling Operations in GNNs
Mean/Max/Sum Pooling

DiffPool
Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Open Challenge: Balancing effectiveness with computational complexity in pooling strategies.

N
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=Pl Graph Autoencoder

Z = enc(X,A) = Geonv(f(Geonv(A,X;04)): O2),

Gconv Geconv

£/ &

Encoderr

Av,u = dec(Zy, Zy) = o(z?;z.u),

Loss Function:

Negative cross entropy given the real
adjacency matrix and the reconstructed
adjacency matrix

N
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=P7L  Variational Graph Autoencoder

(@ A

010000
100000

Er
Q000 \\ Q9 .. @- /a
ARRZAE s\

L = Eqzx,a)log p(A|Z)] — KL[q(Z|X, A)||p(Z)],

Lower-bound reconstruction error

1coder a Decoder
—
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=P*L  Theoretical Aspects: Shape of receptive field

Definition: The receptive field of a node refers to the set of neighboring nodes that contribute to its final
node representation.

Growth Through Layers: Each additional spatial graph convolutional layer expands the node’s receptive
field, allowing it to incorporate information from increasingly distant neighbors.
Stacking layers helps nodes gather more global information.

Key Insight:

Micheli (2009) demonstrated that a finite number of graph convolutional layers allows a node’s receptive
field to cover all nodes in the graph.

Thus, GNNs can extract global graph information by building upon local connections.

Be careful about oversmoothing

N
w
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=PFL Permutation Invariance or Equivariance

Node-Level Tasks (Equivariance):

A GNN must be equivariant for tasks that predict properties at the node level (e.g., node classification).

Equivariance ensures that changing the order of nodes in the input leads to the same change in the
output.

Condition:

f(QAQ", QX) = Qf(A,X)

Q: Permutation matrix

Graph-Level Tasks (Invariance):

A GNN must be invariant for tasks that predict properties of the entire graph (e.g., graph classification).

Invariance ensures that reordering nodes doesn’t affect the overall graph representation.

Condition: f(QAQTa QX) = f(A, X)

N
£
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=PrL

Popular Benchmarks

N
o

resi

Category  Data set Source  # Graphs  # Nodes(Avg.) # Edges (Avg.) #Features # Classes Citation
(22], [23], [25], [41], [43]), [44], [45]
. Cora [117] 1 2708 5429 1433 7 [49]. [50]. [51]. [53]. [56]. [61]. [62]
Networks | Citeseer [117] 1 3327 4732 3703 6 {gg} {gH {2;} 93], 1381, 1203, o2l
(18], [22], [25], [41], [43], [44], [45]
Pubmed [117] 1 19717 44338 500 3 [49], [51], [53], [55], [56], [61], [62]
[70], [95]
DBLP (vi1) [118] 1 4107340 36624464 . [64], [70], [99]
(18], [42], [43], [48], [45], [50], [55]
PPI [119] 24 56944 818716 50 121 (56]. [58]. [64]
NCI-1 [120] 4110 29.87 32.30 37 2 [25], [26], [46], [52], [57], [96], [98]
Bio- MUTAG [121] 188 17.93 19.79 7/ 2 [25], [26], [46], [52], [57], [96]
chemical | D&D [122] 1178 284.31 715.65 82 2 [26], [46], [52], [54], [96], [98]
Graphs PROTEIN [123] 1113 39.06 72.81 4 2 [26], [46], [52], [54], [57]
P [124] 344 290 - 19 2 [25], [26], [46], [52], [57]
QM9 [125] 133885 - - - (27], [69]
Alchemy [126] 119487 - - - -
Social Reddit [42] 1 232965 11606919 602 41 [42], [48], [49], [50], [51], [56]
Networks | BlogCatalog [127] 1 10312 333983 - 39 [18], [55], [60], [64]
MNIST [128] 70000 784 - 1 10 [19], [23], [21], [44], [96]
Others METR-LA [129] 1 207 1515 2 - [48], [72], [76]
Nell [130] 1 65755 266144 61278 210 [22], [41], [50]




=PrL

Recurrent Graph Neural Networks and STGNNs

Example: GraphConvLSTM

i = 0(Waixg T + Whixg hy_1 +wei © ci—1 + b;),
f=0Wgs*g xt + Why*g ht—1 + wep © ¢—1 + by),
¢t = ft ©@ ct—1 + it © tanh(Wye *g 2t + Whe *g he—1 + be),
0=0Wzgo %G Tt + Who *g ht—1 + Weo © ¢t + bo),
ht = 0 ® tanh(ct).

Spatial-Temporal Graph Neural Networks

Time-then-graph (temporal module + spatial module)
Graph-then-time (spatial module + temporal module)

N
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=PrL

Future Direction

1. Model Depth

Deep learning success relies on deep architectures.

GNNs face performance drops with increasing layers.

Challenge: Too many layers cause node representations to converge to a single point.

2. Heterogeneity
Current GNNs assume homogeneous graphs.

3. Scalability Trade-off
Scalability requires sacrificing graph completeness.
Challenge: Sampling can miss influential nodes, and clustering may lose key structural patterns.

N
~
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Application Aspects
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=L Qverview

= Tumor prognostics from slide = Cardiovascular blood flow
images with Graph Attention simulation with physics-inspired
Network Graph Neural Networks
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=PFL  Derivation of Prognostic Contextual Histopathological
Features from Whole-slide Images of Tumours via Graph
Deep Leaming




=PFL " Introduction: Diagnostics Pipeline

Context region selection | Local features

tissue
Infos

Whole slide imaging

it feature - Relationship between each feature

Decision

Immune cells within
normal region

1X31U0)

Low risk

Automation of pipeline

B
eEd,
Grade:3

5-year surv
prob: 30%




=PrL

Literature Gap

= Deep Learning advent
 Cell type classification
 Extraction of risk-related features

= Convolutional Neural Networks
e Local focus on features
 No context!

= Graph Neural Networks
« Computational issues
* No positional information
* Interpretability

Patient stratification

0 50 100 150 200 250 300
Timeline (months)

Pooling

TIzzese

Pooling Pooling

Convolution
Kernel Re+LU

Convglution Convglutlon
RelU RelU

Output




=PFL  Framework

- Tumor Environment Associated Graph (TEA)
= Graph Attention Network trained semi-supervised

=  Superpatch graph for compression
= Interpretability with attention score and Integrated Gradient

Risk-related context |—| Iterate overall process H Prediction H Context feature extraction - Graph neural network

Risk: 1.04
5-year surv
prob: 10%

FClayer GNN layer FClayer




=PrL

Framework

Whole slide image tiling

Local feature extraction

Context region inference

Risk-related context

Iterate overall process =

Prediction

e

TEA-graph

Risk: 1.04

5-year surv
prob: 10%

FC layer

E
=z =z
=z =z

GNN layer FC layer




=PrL

Method

Preprocessing

Otsu filter for background

Feature extraction with fine-tuned ImageNet

Superpatch graph construction

Model

Forward Connected Layers
Graph attention network
Position as edge features

Postprocessing

Integrated gradients

NNO
NNO

FC layer GNN layer FC layer

. Lo m AGNN[V4+ L x (V-V
IG(V‘)_Z(v;—Vk)xZ [ +a""ﬂ'.‘x( ) x%

k-1 p=1




=P7L  Application

Prognosis-related WS risk analysis
context learning Interpretable prognostic markers / -
S ’.."‘;. .:i ;:A'.“:.'
o
e A l B 5.7-’;T- -
E e : High-risk 'V"a.f)é g < ;{ - X0 j."",'i‘_f' F
- environment . " «r\€ i
-  Goals “ s -/
Mid-risk
H environment ; ifinati
- RI Sk Of events | / Patient stratification
=  Context features } s :
5 g environm ” .
ﬁ \ "
04 :
02 :

0 50 100 150 200 250 300
Timeline (months)

. Data PO
= Lung, breast, kidney, uterine cancer
= 831 patients
= 70%/10%/20% for train/validation/test sets



“P'L Results

Predicting prognosis
Correlation to known pathologic prognostic markers

Hetergeneous contextual features



=PrL  Results: Predicting Prognosis

_ _ _ c WHO/ISUP grade (survival) TEA-graph risk grade (survival)
a Survival Progression Metastasis
1-0 - '.'----- 1'0 -5
0.95 | 3 - “ean. |
? i i‘~‘ ‘--q‘: --------
. - - ‘ ---------
09} , A 084 1% 0.8 -
+ _ L ] 'Q‘
0.85 - 4 ‘ - S VT Teeeey
3 E : ==
8 o080 [;] : s S 061 tome 0.6 -
£ b} - \.
b c
© ozt -é ¢ - 2 “
S04 4 0.4
0.70 - - - e
boeoeoeoeoeee
0.65 - ' - 0.2 4 P value: 0.2 41 P value:
2.98 x 1074 1.87 x 10752
I WHONSUP grade ] TNM stage [ TEA-graph 0 50 100 150 200 250 30C 0 50 100 150 200 250 300
- ?Age B Al + TEA-graph Timeline (months) Timeline (months)
Sex o, - °
WHO/ISUP mmmm—= TEA-graph grade 1 (0-25%) wesssn TEA-graph grade 2 (25-50%)

TNM) mmsmmmm TEA-graph grade 3 (50-75%) mmmmsm TEA-graph grade 4 (75-100%)



=Pt Results: Correlation to Known Pathologic Markers

Small tumor cells Normal regions  Aggressive tumor cells

Mid IG group patches

Markers for fair or irrelevant prognosis

Markers for favourable prognosis Markers for unfavourable prognosis

Low IG group
(10%)

 High IG group
: (10%)

—1 -0.7 -0.35 0 0.25 0.5 0.75 1
Normalized IG value

Kaplan—Meier analysis of low IG group Kaplan—Meier analysis of mid IG group Kaplan—Meier analysis of high IG group
1.0 1 P value: 3.42 x 1052 10 - Pvalue: 0.02 10 P value: 6.89 x 10-2°
g 097 0.9 1 0.9 -
5
2 08 0.8 4 0.8 -
C
2
& 0.7 - 0.7 1 0.7 -
—— High-count group ~ High-count group — High-count group
0.6 -{ —— Low-count group 0.6 | — Low-count group 0.6 {—— Low-count group
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Timeline (months) Timeline (months) Timeline (months)

Tissue changes Capillary growth Cell deaths



=F7L  Results: Heterogeneous Contextual Features

Node |G value 1 0 Edge attention value 1
| I e -

Low attention

~ < oy
2 '«‘:,"""

Local features

Interstitial inflammation

Inflammation related to chronic kidney disease Favourable prognosis




EPFL - Summary

- Graph Attention Network
= Position edge features
= Integrated gradients

Patient stratification

- Application
= Risk prediction
= Context features

s

o 50 100 150 200 250 300
Timeline (months)

- Improvements _., . ‘ , _ -
= Cellular-level features . %
= Attention model
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=PFL  Leaming Reduced-Order Models for Cardiovascular
Simulations with Graph Neural Networks




=Pl Introduction

Computational Fluid Dynamics
= Non-invasive method
High computational cost!

Reduced order models

= Reduced precision - static pressures!
Generalization - specific models!

Physics-informed Neural Networks
= Don’t support unseen geometries!

=
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=PFL  Framework

- Modified MeshGraphNet

Inlet

lterative

Learned one-step simulator rollout

t t+1

q; q;

A pPi

Outlet

LS

v 1

Encoder Processor Decoder R

Junction

\ 4

\J
N

R
/‘ eV
’> = Message
passing x L

Branch




£PFL - Method

| Each node — P Pc
Junction /’ _/\/\/\ K

A P
)
E{sv?/srl;t; F 3 Nodes’ positions
Area . Distance
Type Type — —_
Boundary




=F7L  Application

Artificial edges

4 v
v
- Training specifics ] /
= Mean squared error on 5 step roll-out '\
= (Gaussian noise for robustness D
= Cross-validation
. Data - \
= 5 healthy & 3 diseased patient models fi-*‘ﬂ.ﬁ f?>
»  3D-simuluation and conversion to 1D — o T\
= 90%/10% - train/test split SV
{r N R



=P7L  Results: Accuracy

B GNN-A, At =0.02s GNN-A, At =0.01s B8 GNN-Bg, At =0.01s
1D, At =0.02s B 1D, At=0.01s B 1D, At =0.001s

20% - Pressure + Flow rate -
S 10|
E 15% - T y = |
2 g
> 10%[ T - < 10'}
3 o E
L .
X 5% 1 . .
107

0%




=Pl Results: RC-Ablation

BN GNN-A I GNN-A w/o RCR values

© 20% |- 1 € 20%F
) ()

L 10%¢F E %10%:‘
2 ' N :
(O]

5 . 2 _
2 2%t 1 < 2%t
© 5

% 1%:— g E 1%5—




=Pl Results: Sensitivity Analysis

BN Pressure sensitivity
3F 0 Flow rate sensitivity -
2
= 2F
=
c
[}
n
1
: < \ o R & <& & o © X N &
N \. O ) o ) : X N
\ ) ) 6?‘6 ¥ v 'b@é \\\b %06
Y Y O Artefact | ' J Q'é AN «®
Previous step  Cross-section

Patient-specific QS%



=F7L  Results: Data Dependency

I I l I _lllllll [ IIIIIII l_ _lllllll | lllllll l_
—— Dataset size = 10 i - = p train B ~{ = ¢ train ]
- p test A - q test -~

—— Dataset size = 40
——— Dataset size = 160

N
S
o~
l
I
|
>

S
" o .\
S vl 5 10%E% 3 F E
g 10% % - 3 1 KX. .
& " S N 1 35\0 -
O > .
= E X 1 T Ry
2%\ +H F -
1% %
- 1% s, T — —
- TTTTIm e °F Rk V1 .
- I I I I - _llllll 11 lllllll l_ _Illlll 1 lllllll{ I—
20 40 60 80 100 10! 102 10 102
Epochs Dataset size Dataset size



=PrL

Summary

Modified MeshGraphNet !
«  Physics-informed w 1
«  Geometry generalization o |

i . Junction /
= Sensitivity analysis Y

£~ K

Application
=  Blood flow simulation

Improvements
= Robustness for geometry generalization
= Model size investigation
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