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Deep Learning Revolution

Transformed tasks like image classification, video processing, and speech recognition.
Traditional tasks deal with data in Euclidean space.

Challenges with Non-Euclidean Data
Increasing applications with data represented as graphs (complex relationships & interdependencies).
Graph data pose significant challenges for existing machine learning algorithms.

Emergence of Graph Neural Networks (GNNs)



GNNs vs. Network Embedding
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Network Embedding:
• Converts nodes into low-dimensional vectors.
• Focuses on preserving network structure for tasks like classification and clustering.
• Includes deep and non-deep learning methods (e.g., matrix factorization, random walks).

GNNs:
• End-to-end deep learning models for various graph tasks.
• Extract high-level representations.
• Can solve network embedding through a graph autoencoder.

Key Difference:
GNNs are a group of neural network models which are designed for various tasks while network 
embedding covers various kinds of methods targeting the same task.



Taxonomies
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Can be trained in:

• Supervised manner
• Semi-supervised manner
• Unsupervised manner



Spectral-Based GCNs
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• Spectral-based methods have a solid mathematical foundation in graph signal processing.
• They assume graphs to be undirected.

Convolution

If

Spectral-based GNNs

The graph convolutional layer of Spectral CNN is defined as

Learnable



Limitations
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• Any perturbation to a graph results in a change of eigenbasis. 

• Learned filters are domain dependent, meaning they cannot be applied to a graph with a 
different structure. 

• Eigen-decomposition requires cubic computational complexity



ChebNet
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• Chebyshev Spectral CNN (ChebNet) approximates the filter by Chebyshev polynomials of the 
diagonal matrix of eigenvalues

Convolution with a defined Chebyshev filter



CayleyNet
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• Filters defined by ChebNet are localized in space, which means filters can extract local features 
independently of the graph size. 

CayleyNet

Re(·) returns the real part of a complex number, 
!! is a real coefficent, 
!" is a complex coefficent,
ℎ is a parameter which controls the spectrum of a Cayley filter



GCN
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• Graph Convolutional Network (GCN) introduces a first-order approximation of ChebNet. 
Assuming # = 1 and &#$% = 2

If

Finally for multichannel input and output

Normalization trick to avoid numerical instability

Replace by

GCN can be also interpreted as a spatial-based method



Spatial-based GCNs
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Message Passing Neural Network (MPNN) outlines a general framework of spatial-
based ConvGNNs. 

It treats graph convolutions as a message passing process in which information can be 
passed from one node to another along edges directly. 

MPNN runs K-step message passing iterations to let information propagate further



GraphSAGE
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GraphSage adopts sampling to obtain a fixed number of neighbors for each node. 

It performs graph convolutions by 

should be invariant to the permutations of node orderings such as a mean, sum or max function.

Random sample on node neighbors



Graph Isomorphism Networks
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Graph Isomorphism Network (GIN) finds that previous MPNN-based methods are 
incapable of distinguishing different graph structures based on the graph embedding 
they produced. 

GIN adjusts the weight of the central node by a learnable parameter. 

It performs graph convolutions by

Discriminative and represnetation power of GIN is equal to the power of Weisfelier-Lehman test.



Color Refinement (1-WL test)
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Take as input two graphs G and H and output a certificate that they are different or 'I don't know’. 

This means that if the heuristic is able to tell G and H apart, then they are definitely different, but 
the other direction does not hold.



Attentional Graph Neural Networks
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Let’s consider more general form of GCN:

GCN defines (&" explicitly! Possible shortcoming!

Instead, we let (&" be computed implictly

a is a learnable

We arrived at Graph Attention Networks (GAT)!



GAT and GATv2
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Relations to Transformers
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Recap on GNNs
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Spectral vs. Spatial
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Spectral Models:

Foundation: 
Built on graph signal processing.

Efficiency:
Requires eigenvector computation or 
processing the entire graph.
Less scalable for large graphs.

Generalization:
Performs poorly on new graphs due 
to reliance on graph Fourier basis.
Sensitive to graph perturbations.

Graph Types:
Limited to undirected graphs.

Spatial Models:

Operation: 
Directly performs convolutions in the graph 
domain via local information propagation.

Efficiency:
More scalable: Can be computed in batches 
of nodes.
Avoids full-graph processing.

Generalization:
Generalizes better to new graphs; operates 
locally on nodes.
Weights can be shared across different graph 
structures.

Graph Types:
Handles directed, heterogeneous, and signed 
graphs easily..



Pooling

Ke
iv

an
 F

ag
hi

h 
N

ire
si

20

Why Down-sampling in GNNs?
Directly using all node features can be computationally expensive.
A down-sampling strategy is required to reduce parameters and prevent overfitting.

Pooling Operations in GNNs
Mean/Max/Sum Pooling

DiffPool

Open Challenge: Balancing effectiveness with computational complexity in pooling strategies.



Graph Autoencoder
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Loss Function:
Negative cross entropy given the real 
adjacency matrix and the reconstructed 
adjacency matrix 



Variational Graph Autoencoder
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Lower-bound reconstruction error



Theoretical Aspects: Shape of receptive field
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Definition: The receptive field of a node refers to the set of neighboring nodes that contribute to its final 
node representation.

Growth Through Layers: Each additional spatial graph convolutional layer expands the node’s receptive
field, allowing it to incorporate information from increasingly distant neighbors.
Stacking layers helps nodes gather more global information.

Key Insight:
Micheli (2009) demonstrated that a finite number of graph convolutional layers allows a node’s receptive
field to cover all nodes in the graph.
Thus, GNNs can extract global graph information by building upon local connections.

Be careful about oversmoothing



Permutation Invariance or Equivariance

Ke
iv

an
 F

ag
hi

h 
N

ire
si

24

Node-Level Tasks (Equivariance):

A GNN must be equivariant for tasks that predict properties at the node level (e.g., node classification).
Equivariance ensures that changing the order of nodes in the input leads to the same change in the 
output.

Condition:

Q: Permutation matrix

Graph-Level Tasks (Invariance):

A GNN must be invariant for tasks that predict properties of the entire graph (e.g., graph classification).
Invariance ensures that reordering nodes doesn’t affect the overall graph representation.
Condition:



Popular Benchmarks
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Recurrent Graph Neural Networks and STGNNs
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Example: GraphConvLSTM

Spatial-Temporal Graph Neural Networks

Time-then-graph (temporal module + spatial module)
Graph-then-time (spatial module + temporal module)



Future Direction
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1. Model Depth
Deep learning success relies on deep architectures.
GNNs face performance drops with increasing layers.
Challenge: Too many layers cause node representations to converge to a single point.

2. Heterogeneity
Current GNNs assume homogeneous graphs.

3. Scalability Trade-off
Scalability requires sacrificing graph completeness.
Challenge: Sampling can miss influential nodes, and clustering may lose key structural patterns.
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▪ Tumor prognostics from slide
images with Graph Attention 
Network

▪ Cardiovascular blood flow
simulation with physics-inspired
Graph Neural Networks

Overview



Derivation of Prognostic Contextual Histopathological 
Features from Whole-slide Images of Tumours via Graph 
Deep Learning



Introduction: Diagnostics Pipeline

Automation of pipeline

Whole slide imaging

Rich 
tissue
Infos



▪ Deep Learning advent
• Cell type classification
• Extraction of risk-related features

▪ Convolutional Neural Networks
• Local focus on features
• No context!

▪ Graph Neural Networks
• Computational issues
• No positional information
• Interpretability

Literature Gap



▪ Tumor Environment Associated Graph (TEA)
▪ Graph Attention Network trained semi-supervised
▪ Superpatch graph for compression
▪ Interpretability with attention score and Integrated Gradient

Framework



Framework



▪ Preprocessing
▪ Otsu filter for background
▪ Feature extraction with fine-tuned ImageNet
▪ Superpatch graph construction

▪ Model
▪ Forward Connected Layers
▪ Graph attention network
▪ Position as edge features

▪ Postprocessing
▪ Integrated gradients

Method

CNN

= {Distance, Angle}



▪ Goals
▪ Risk of events
▪ Context features

▪ Data 
▪ Lung, breast, kidney, uterine cancer
▪ 831 patients
▪ 70%/10%/20% for train/validation/test sets

Application



▪ Predicting prognosis

▪ Correlation to known pathologic prognostic markers

▪ Hetergeneous contextual features

Results



Results: Predicting Prognosis

(Age
Sex
WHO/ISUP
TNM)



Results: Correlation to Known Pathologic Markers

Aggressive tumor cellsSmall tumor cells Normal regions

Tissue changes Capillary growth Cell deaths



Results: Heterogeneous Contextual Features



▪ Graph Attention Network
▪ Position edge features
▪ Integrated gradients

▪ Application
▪ Risk prediction
▪ Context features

▪ Improvements
▪ Cellular-level features
▪ Attention model

Summary

𝒆𝒊𝒋 = {Distance, Angle}



Learning Reduced-Order Models for Cardiovascular 
Simulations with Graph Neural Networks



▪ Computational Fluid Dynamics
▪ Non-invasive method
▪ High computational cost!

▪ Reduced order models
▪ Reduced precision - static pressures!
▪ Generalization - specific models!

▪ Physics-informed Neural Networks
▪ Don’t support unseen geometries!

Introduction



▪ Modified MeshGraphNet

Framework

Flow rate, pressureInlet

Outlet

Junction

Branch



Method

Inlet

Outlet

Junction

Branch

Each node

Pressure
Flow rate
Area
Type
Boundary

Nodes’ positions
Distance
Type



▪ Training specifics
▪ Mean squared error on 5 step roll-out
▪ Gaussian noise for robustness
▪ Cross-validation

▪ Data
▪ 5 healthy & 3 diseased patient models
▪ 3D-simuluation and conversion to 1D
▪ 90%/10% - train/test split

Application
Artificial edges



Results: Accuracy



Results: RC-Ablation



Results: Sensitivity Analysis

Patient-specificPrevious step Cross-section
Artefact



Results: Data Dependency



▪ Modified MeshGraphNet
▪ Physics-informed
▪ Geometry generalization
▪ Sensitivity analysis

▪ Application
▪ Blood flow simulation

▪ Improvements
▪ Robustness for geometry generalization
▪ Model size investigation

Summary

Inlet

Outlet

Junction

Branch
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You


